Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Biomed Eng (2023) ; 13919: 443-454, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37497240

RESUMO

The cardiac operating room (OR) is a high-risk, high-stakes environment inserted into a complex socio-technical healthcare system. During cardiopulmonary bypass (CPB), the most critical phase of cardiac surgery, the perfusionist has a crucial role within the interprofessional OR team, being responsible for optimizing patient perfusion while coordinating other tasks with the surgeon, anesthesiologist, and nurses. The aim of this study was to investigate objective digital biomarkers of perfusionists' workload and stress derived from heart rate variability (HRV) metrics captured via a wearable physiological sensor in a real cardiac OR. We explored the relationships between several HRV parameters and validated self-report measures of surgical task workload (SURG-TLX) and acute stress (STAI-SF), as well as surgical processes and outcome measures. We found that the frequency-domain HRV parameter HF relative power - FFT (%) presented the strongest association with task workload (correlation coefficient: -0.491, p-value: 0.003). We also found that the time-domain HRV parameter RMSSD (ms) presented the strongest correlation with perfusionists' acute stress (correlation coefficient: -0.489, p-value: 0.005). A few workload and stress biomarkers were also associated with bypass time and patient length of stay in the hospital. The findings from this study will inform future research regarding which HRV-based biomarkers are best suited for the development of cognitive support systems capable of monitoring surgical workload and stress in real time.

2.
Perfusion ; 37(4): 331-333, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739181

RESUMO

BACKGROUND: Monitoring oxygen delivery to the oxygenator of a heart lung machine (HLM) is typically accomplished with an O2 analyzer connected to the gas inflow line. It is assumed when the FiO2 is greater than 21% that oxygen is being delivered to the oxygenator. However, this assumption is imperfect because the connection of the inflow line to the oxygenator is downstream from the O2 analyzer. FiO2 monitoring will not alert the perfusionist if the inflow line is not actually connected to the oxygenator. Measuring the fraction of expired oxygen (FEO2) is a more reliable way of monitoring O2 delivery. METHODS: An O2 analyzer was placed on the scavenging line that is attached to the exhaust port of oxygenator (FEO2). RESULTS: Whenever the FiO2 is greater than 21%, and the inflow line is properly connected, the FEO2 exiting the oxygenator is greater than 21%. The FEO2 falls to 21% when the inflow line is not functioning. CONCLUSION: Monitoring the FEO2 is a more reliable way to verify O2 delivery to an oxygenator. An alarm can be set on the FEO2 monitor to alert the perfusionist if the FEO2 falls below a predetermined threshold so any issue with O2 delivery will always be recognized.


Assuntos
Máquina Coração-Pulmão , Oxigênio , Ponte Cardiopulmonar , Humanos , Monitorização Fisiológica , Oxigenadores
3.
Hum Factors ; 63(5): 757-771, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33327770

RESUMO

OBJECTIVE: This novel preliminary study sought to capture dynamic changes in heart rate variability (HRV) as a proxy for cognitive workload among perfusionists while operating the cardiopulmonary bypass (CPB) pump during real-life cardiac surgery. BACKGROUND: Estimations of operators' cognitive workload states in naturalistic settings have been derived using noninvasive psychophysiological measures. Effective CPB pump operation by perfusionists is critical in maintaining the patient's homeostasis during open-heart surgery. Investigation into dynamic cognitive workload fluctuations, and their relationship with performance, is lacking in the literature. METHOD: HRV and self-reported cognitive workload were collected from three Board-certified cardiac perfusionists (N = 23 cases). Five HRV components were analyzed in consecutive nonoverlapping 1-min windows from skin incision through sternal closure. Cases were annotated according to predetermined phases: prebypass, three phases during bypass, and postbypass. Values from all 1min time windows within each phase were averaged. RESULTS: Cognitive workload was at its highest during the time between initiating bypass and clamping the aorta (preclamp phase during bypass), and decreased over the course of the bypass period. CONCLUSION: We identified dynamic, temporal fluctuations in HRV among perfusionists during cardiac surgery corresponding to subjective reports of cognitive workload. Not only does cognitive workload differ for perfusionists during bypass compared with pre- and postbypass phases, but differences in HRV were also detected within the three bypass phases. APPLICATION: These preliminary findings suggest the preclamp phase of CPB pump interaction corresponds to higher cognitive workload, which may point to an area warranting further exploration using passive measurement.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Cognição , Humanos , Carga de Trabalho
4.
Sensors (Basel) ; 20(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227967

RESUMO

Monitoring healthcare providers' cognitive workload during surgical procedures can provide insight into the dynamic changes of mental states that may affect patient clinical outcomes. The role of cognitive factors influencing both technical and non-technical skill are increasingly being recognized, especially as the opportunities to unobtrusively collect accurate and sensitive data are improving. Applying sensors to capture these data in a complex real-world setting such as the cardiac surgery operating room, however, is accompanied by myriad social, physical, and procedural constraints. The goal of this study was to investigate the feasibility of overcoming logistical barriers in order to effectively collect multi-modal psychophysiological inputs via heart rate (HR) and near-infrared spectroscopy (NIRS) acquisition in the real-world setting of the operating room. The surgeon was outfitted with HR and NIRS sensors during aortic valve surgery, and validation analysis was performed to detect the influence of intra-operative events on cardiovascular and prefrontal cortex changes. Signals collected were significantly correlated and noted intra-operative events and subjective self-reports coincided with observable correlations among cardiovascular and cerebral activity across surgical phases. The primary novelty and contribution of this work is in demonstrating the feasibility of collecting continuous sensor data from a surgical team member in a real-world setting.


Assuntos
Cognição , Cirurgiões , Carga de Trabalho , Humanos , Salas Cirúrgicas , Espectroscopia de Luz Próxima ao Infravermelho
5.
J Extra Corpor Technol ; 51(3): 172-174, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31548741

RESUMO

Traditionally, blood flow rates on cardiopulmonary bypass are based primarily on a formula that matches cardiac index to the patient's body surface area (BSA). However, Ranucci and associates in the Goal-Directed Perfusion Trial (GIFT) trial have shown that coupling the BSA with delivery of oxygen (DO2), known as goal-directed perfusion (GDP), may be a safer approach to determine appropriate blood flows. The objective of this study was to create a GDP reference tool that would allow perfusionists to quickly determine the lowest acceptable blood flow needed to provide a patient of any BSA with a satisfactory DO2 without the need for additional dedicated technology. We approached this problem by deriving a formula for flow (L/min), based on BSA, oxygen content of the blood, and a minimum DO2 of 280 mL·min-1m-2. A quick reference GDP chart was created based on the derived formula, requiring only the patient's BSA and hemoglobin level to determine a safe minimum flow rate. The proposed tool allows any cardiac surgery center to adopt the GDP technique, even in the absence of instantaneous DO2 monitoring equipment.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Objetivos , Humanos , Oxigênio , Consumo de Oxigênio , Perfusão
6.
J Extra Corpor Technol ; 51(1): 38-40, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30936587

RESUMO

If a perfusionist weans a patient off the heart lung machine (HLM) and the anesthesiologist has not re-started the ventilator, the patient will become hypoxic. The objective of this project was to create a redundant safety system of verbal and electronic communication to prevent failure to ventilate errors after cardiopulmonary bypass. This objective could be realized by building an electronic communication bridge directly between the HLM and ventilator. A software application was created to retrieve and interpret data from the pump and ventilator and trigger a programmed smart alarm. The software is able to interpret data from the pump and ventilator. When both are off simultaneously (defined as a pump flow of 0 L/min with a respiratory rate of 0 breaths/min), the application will raies an alarm. Communication between a pump and ventilator is possible, enabling the deployment of a safety system that could exist in the operating room (OR) as a standalone alarm. A device dataset can be used to optimize clinical performance of the alarm. The application could also be integrated into smart checklists and computer-assisted OR process models that are currently in development.


Assuntos
Ponte Cardiopulmonar , Ventiladores Mecânicos , Humanos , Procedimentos Cirúrgicos Vasculares
7.
Artigo em Inglês | MEDLINE | ID: mdl-30729236

RESUMO

During cardiac surgery there is an unmet need for safe transfer of responsibility for patient oxygenation back and forth from the anesthesia to the perfusion teams. Prior to cardiopulmonary bypass (CPB), lung ventilation is performed by the anesthesia machine ventilator and is the responsibility of the anesthesia team. During CPB, lung ventilation is halted and oxygenation is performed by the CPB oxygenator and perfusion team This recurrent transfer throughout the procedure introduces the rare but serious possibility of a "never event", resulting in the patient's lungs not being ventilated upon stopping the CPB and potentially leading to catastrophic hypoxemia. Monitors and alarms on the anesthesia and bypass machines would not be useful when the other device is operating so they are routinely put into a standby mode until needed. Consequently, in the event that the handoff is missed, there are no alarms to catch the situation. To solve this unmet need, we propose a novel interoperable, context-aware system capable of detecting and acting if this rare situation occurs. Our system is built on the open-source OpenICE framework, allowing it to seamlessly work with a variety of ventilator and bypass machines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...